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A schematic diagram of the constant phase difference circuits tobe dis-

cussed is given in Fig. 1. It consists of two similar two-port log-periodic

circuits with their inputs connected in parallel. Ideally, the two-port cir-

cuits are designed such that their scattering coefficients are given by

.s11=s2~=o,

“’=s’’=exp[-’+q)l)l ‘ “)
where f is the frequency, T is the design ratio of the log-periodic circuits,

and cfl is an arbitrary constant. The arbitrary constant ~ may be varied by
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Fig. 1 Constant phase difference circuit.

scaling the log-periodic circuit as discussed in the preceding paper. This

allows the two-port circuits to be designed such that the coupled outputs

have a phase difference which is independent of frequency. Although the

phase difference circuit performs its function in a frequency-independent

manner, the circuit is actually dispersive because of the form of S1’.

Figure 2 illustrates several forms of two-port log-periodic circuits which

may be used as components in the phase difference circuit. The lines may

be considered to represent the center conductors of strip transmission line

circuits. It will be noticed that the circuits of Figures 2 (b), (c), and (d)

have a one-fold symmetry about their center lines. If the coupled strips of

Fig. 2 (a) were placed one above the other, then that structure would be sym-

metric in the sense that a rotation of 180 degrees about the center line Of

the structure would leave it unchanged. The analysis of symmetrical cir-

cuits such as these may be greatly simplified by making use of the normal

modes. The normal modes or eigenvectors for circuits with either of the

above types of symmetry are the common even (+ +) and odd (+ –) modes.
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Fig. 2 Two-port log-periodic transmission

Ii ne networks.
Fig. 3 Normal mode exCifatiOn Of

a log-periodic network.

The scattering matrix for these circuits may be written ss

[

~ re+ro re-ro 1‘=1re–ro re+ro ‘ (2)

where re and r. are the even and odd mode input reflection coefficients

which are normalized to 2..

Figure 3 illustrates the even and odd mode excitation of the network of

Fig. 2 (a). Now for circuits with one-fold symmetry, magnetic or electric

walls may be inserted along the center line for the even and odd modes of

excitation, respectively. Thus, r. or r. is the input reflection coefficient

of a single transmission line loaded in a log-periodic manner, as discussed

in the preceding paper. r. and r. may be calculated for given circuit pa-
rameters by straightforward, but tedious matrix multiplication. If the circtit

is designed properly (see preceding paper), then ideally the phases of re

and r. are linearly proportional to log f. The analysis of circuits with 1800

symmetry can also be reduced to that of a single loaded transmission line,

but the computation of the loading impedances is not as straightforward.

The characteristics of a two-port circuit will be outlined for the circuit

of Fig. 3. It consists of two radial transmission lines of characteristic im-

pedance 20 ~ , interconnected at log-periodic intervals by coupled transmis-

sion lines with a coupling coefficient c and of electrical length en. The mean

of the even and odd mode characteristic impedances of the coupled lines is

denoted by 202. The spacing of the coupling sections is determined by 0.

The shunt impedances, z., and .zno, which the cOupling sectiOns present
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to the radial transmission line are illustrated in Fig. 4, Effectively, the

coupling between the shunt stubs makes the effective stub length different

for the even and odd modes. Thus, it is to be expected that re and r. will

not, in general, be in phaae, since the active or short circuit region for the

even mode is at a greater distance from the input than that for the odd mode.

Fig. 4 Normal mode shunt loading impedance.

The characteristic impedances for the two modes are also different and

are given by
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where k = {(1 – c)/(1 + c). The solid curves of Fig. 5 illustrate the ideal

variation of l~e and ro when normalized to Zoe and Zoo respectively.

The coupling coefficient c may be chosen to provide a phase difference be-

tween re and r. of 1800. When re and r. are normalized to Z. =

~zoe zoo, the dashed curves are obtained. Calculation of the scattering co-

efficients gives approximately:

In order to keep the ripple or phase deviation from linear small, the ratio

Zoe/Zoo should be near unity.

The results of extens Lve computer investigations of two-port circuits will

be given in the form of design curves and concepts, of those studied, the

circuit of Fig. 2 (b) is best suited for the phase difference circuit applica-
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Fig, 5. Normal mode reflection coefficient phase characteristics.

tion. Theoretical results predict that it is possible to make S1 ~ <.03, and

the phase ripple of S1 z less than 1..5 degrees.

ExperimetNal results for a balun (i. e., a phase difference of 1800, de-

signed for the frequency band of .5 to 5 Gc are given. The circuit is con-

tained in a triangular-shaped low-loss die lectric loaded package approxi-

mately .5 inches thick, 10 inches wide and 24 inches long. BY modifying

the design and increasing the cost, a smaller package could be obtained.

Printed circuit versions of the two-port structure of Fig. 2 (b) were utilized.
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